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Abstract
It is shown that the geometrical optics limit of the Maxwell equations for certain
nonlinear media with slow variation along one axis and particular dependence
of the dielectric constant on frequency and fields gives rise to the dispersionless
Veselov–Novikov equation for the refractive index. It is demonstrated that the
dispersionless Veselov–Novikov hierarchy is amenable to the quasiclassical
∂̄-dressing method. A connection is noted between the geometrical optics
phenomena under consideration and the quasiconformal mappings on the plane.

PACS numbers: 02.30.Ik, 42.15.Dp

A great variety of nonlinear phenomena from various fields of physics, applied physics,
mathematics and applied mathematics can be modelled by nonlinear integrable equations
[1–8]. A subclass of such equations, the so-called dispersionless integrable equations, has
attracted particular interest during the last decade [9–17].

In this letter we will show that the propagation of electromagnetic waves of high frequency
in certain nonlinear media is governed by the dispersionless Veselov–Novikov (dVN) equation.
Namely, we will demonstrate that the Maxwell equations describing the propagation of waves
in media characterized by a slow variation along the z-axis and particular dependence of the
dielectric constant on frequency and fields in the limit of geometrical optics give rise to the dVN
equations for the refractive index. These equations provide us with integrable deformations
of the plane eikonal equation which preserve, in particular, the total ‘plane’ squared refractive
index

∫∫
n2 dx dy. Under more special conditions one gets the dispersionless Kadomtsev–

Petviashvili (dKP) equation. We will show that the dVN equations are treatable by the
quasiclassical ∂̄-dressing method developed recently in [18–20]. The quasiclassical ∂̄-
dressing method also reveals a connection between the geometrical optics phenomena under
consideration and the theory of quasiconformal mappings on the plane.

We start with the Maxwell equations in the absence of sources (we take the velocity of
light c = 1)
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∇ ∧ H − Ḋ = 0 ∇ · D = 0
(1)

∇ ∧ E + Ḃ = 0 ∇ · B = 0

and the material equations of a medium

D = εE B = µH. (2)

Here and below ∇ = (∂x, ∂y, ∂z), while · and ∧ denote the scalar and vector products
respectively.

We will study the propagation of electromagnetic waves of the fixed, high frequency ω,
i.e. we will look for the solutions of the Maxwell equations of the form [21]

E(x, y, z, t) = E0(x, y, z) e−iωt+iωS(x,y,z)

(3)
H(x, y, z, t) = H0(x, y, z) e−iωt+iωS(x,y,z)

where E0, H0 and the phase S(x, y, z) are certain functions.
In addition, we assume that the nonlinear medium is characterized (1) by the independence

of the magnetic permeability µ(x, y, z) from the frequency ω; (2) by the Cole–Cole
dependence [22]

ε = ε0 +
ε̃

1 + (iωτ0)2ν
0 < ν <

1

2
(4)

of the dielectric constant ε on ω (where ε0(x, y, z) and τ0 are independent of ω and ε̃ is a
function of coordinates and fields); (3) by a slow variation of all quantities along the z-axis
such that ∂

∂z
= ω−ν ∂

∂ξ
, where ξ is a ‘slow’ variable defined by z = ωνξ , i.e.

S = S(x, y, ξ) E0 = E0(x, y, ωνξ) H0 = H0(x, y, ωνξ). (5)

Now, rewriting equations (1) and (2) as the second-order differential equations for the electric
and magnetic fields, respectively, using (3) and (5) and taking into account that at ω → ∞

ε = ε0 +
ε1

ω2ν
(6)

where ε1 = (iτ0)
2ν ε̃, one obtains in the leading ω2 order

S2
x + S2

y = µε0 (7)

while, in the next ω2−2ν order, one obtains

Sξ = (µε1)
1
2 . (8)

Equation (7) is the standard eikonal equation on the x, y plane with the refractive index
n(x, y, ξ) = (µε0)

1
2 . The slow variation of S along the z-axis is defined by equation (8),

where µε1 depends both on coordinates x, y, ξ and fields. We also assume that the absorption
effects are negligible, so µε can be taken as real. We would like to note that the first two
features of the medium mentioned above are quite generic and they are valid for a variety of
dielectric media [22–24], while the particular type of slow variations along the z-axis given
by (8), seems, did not attract attention before.

Since the function ε1 is determined by the geometrical optics limit ω → ∞ and the time
translation symmetry t → t + const of the Maxwell equations for the solutions of type (3)
is equivalent to the symmetry under transformations S → S + const, one concludes that the
function ε1 for nonlinear media may depend on the coordinates x, y, ξ and only on Sx and
Sy . Thus, the geometrical optics limit of the Maxwell equations in nonlinear media under
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consideration is governed by the equations

S2
x + S2

y = n2(x, y, ξ) (9)

Sξ = ϕ(x, y, ξ ; Sx, Sy) (10)

where ϕ is some real-valued function. Introducing the variables z = x + iy, z̄ = x − iy
(please, do not confuse it with the variable used in equation (3)), one rewrites these equations
as follows:

SzSz̄ = u(z, z̄, ξ) (11)

Sξ = ϕ(z, z̄; ξ, Sz, Sz̄) (12)

where u = 4n2.
The compatibility of equations (9) and (10) (or (11), (12)) imposes constraints on the

possible forms of the function ϕ, namely

Sz̄

∂ϕ

∂z
+ Sz

∂ϕ

∂z̄
+ uzϕ

′ + uz̄ϕ
′′ = uξ (13)

where

ϕ′ = ∂ϕ

∂Sz

(z, z̄; Sz, Sz̄) ϕ′′ = ∂ϕ

∂Sz̄

(z, z̄; Sz, Sz̄). (14)

Here we restrict ourselves to functions ϕ which are polynomials in Sz, Sz̄ and compatible with
the real-valuedness of S and u. For the simplest choice ϕ = α0(z, z̄, ξ), equation (13) obviously
gives α0 = const, i.e. uξ = 0, S = α0ξ + S̃(z, z̄). For the linear function ϕ = αSz + ᾱSz̄ +
β + β̄, one obtains α = α(z), β = const, and

uξ = (αu)z + (ᾱu)z̄. (15)

For the quadratic ϕ = αS2
z + ᾱS2

z̄ + βSz + β̄Sz̄ + γ + γ̄ , equations (13) and (11) imply
α = 0, β = β(z) and γ = const, i.e. one obtains the previous linear case.

The cubic ϕ = αS3
z + ᾱS3

z̄ + βS2
z + β̄S2

z̄ + γ Sz + γ̄ Sz̄ + δ + δ̄ obeys equations (13) and (11)
if

α = α(z) β = 0 γz̄ = −αzu − 3αuz δ = const (16)

and one obtains

uξ = (γ u)z + (γ̄ u)z̄. (17)

In the particular case α = 1 and, consequently γz̄ = −3uz, equation (17) is nothing but the
dispersionless Veselov–Novikov equation introduced in [11, 20].

In a similar manner one can construct nonlinear equations which correspond to higher
degree polynomials ϕ. These higher degree cases apparently become physically relevant for
the phenomena with large values of Sx and Sy . Thus, if we formally admit all possible degrees
of Sz and Sz̄ on the right-hand side of equation (12), then one has an infinite family of nonlinear
equations, which may govern the ξ -variations of the wave fronts and ‘refractive index’ u. Since
equation (12) should respect the symmetry S → −S of the eikonal equation (11), one readily
concludes that only polynomials ϕ of the form

∑N
n=1 unS

2n−1
z +

∑N
n=1 ūnS

2n−1
z̄ , are admissible

(the constant terms which have appeared in the cases (15), (17) discussed above are, in fact,
irrelevant). In the case uN = 1 one obtains the dVN equation mentioned above (N = 2) and
the so-called dVN hierarchy of nonlinear equations. The dVN equation has been introduced
in [11, 20] as the dispersionless limit of the VN equation, which is the (2+1)-dimensional
integrable generalization of the famous Korteweg–de Vries (KdV) equation [1–3, 5].
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Let us consider a more specific situation in which the propagation of electromagnetic
waves in the media discussed above exhibits also a slow variation along the y-axis, namely
∂y = ε∂η, where η is a slow variable defined by y = η/ε and ε is a small parameter. If one
assumes that the functions S and u in the eikonal equation (9) have the following behaviour at
small ε:

S = y

2ε
− S̃(x, η, ξ) n2

(
x,

η

ε
, ξ

)
= 1

4ε2
− q(x, η, ξ) (18)

and the polynomial ϕ
(
x,

η

ε
, ξ ; Sx, εSη

)
has an appropriate behaviour as ε → 0, then in this

limit, equations (9) and (10) are reduced to

S̃η = S̃2
x + q S̃ξ = ϕ̃(x, η, ξ ; S̃x) (19)

where ϕ̃ is an odd order polynomial in S̃x . Equations (19) describe propagation of the quasi-
plane wave fronts y = const in a medium with very large refractive index. Compatibility of
equations (19) gives rise to the well-known dispersionless Kadomtsev–Petviashvili equation
qξ = 3

2qqx + 3
4∂−1

x qηη and the whole dKP hierarchy. The dKP equation is rather well studied
(see, e.g., [11, 15] and references therein). The KP equation itself represents the most known
(2+1)-dimensional integrable generalization of the KdV equation.

The dVN and the dKP equations being relevant in particular situations of propagation
of waves in certain nonlinear media have an advantage of being solvable. Various methods
have been applied to solve the dKP equation, including the quasiclassical ∂̄-dressing method
[18–20]. Here we will demonstrate that the dVN equation is amenable to this method too.

The quasiclassical ∂̄-dressing method is based on the nonlinear Beltrami equation [18–20]

Sλ̄ = W(λ, λ̄; Sλ) (20)

where λ is the complex variable, Sλ = ∂S/∂λ and W is a certain function (∂̄-data). To
construct integrable equations one has to specify the domain G (in the complex plane C)
of support for the function W (W = 0, λ ∈ C\G) and look for the solution of (20) in the
form S = S0 + S̃, where the function S0 is analytic inside G, while S̃ is analytic outside G
[18–20]. To obtain the dVN equation and the whole dVN hierarchy, we choose G as the ring
D = {

λ ∈ C : 1
a

< |λ| < a
}
, where a is an arbitrary real number (a > 1), and the function S0

in the form

S0 =
∞∑

n=1

xnλ
2n−1 +

∞∑
n=1

x̄nλ
−2n+1. (21)

We also assume that

S̃ =
∞∑

n=0

S
(∞)
2n+1

λ2n+1
λ → ∞ (22)

‘normalization’ and

S̃ =
∞∑

n=0

λ2n+1S
(0)
2n+1 λ → 0. (23)

Note that a function S(λ, λ̄, xn, x̄n) has the properties (21)–(23) if it obeys the constraints

S(−λ,−λ̄) = −S(λ, λ̄) (24)

S̄(λ, λ̄) = S

(
1

λ̄
,

1

λ

)
. (25)

The constraint (25) also implies that

S
(∞)
2n+1 = S̄

(0)
2n+1.
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An important property of the nonlinear ∂̄-problem (20) is that the derivatives of S with respect
to any independent variable xn obeys the linear Beltrami equation(

∂S

∂xn

)
λ̄

= W ′(λ, λ̄; Sλ)

(
∂S

∂xn

)
λ

(26)

where W ′(λ, λ̄;φ) = ∂W
∂φ

(λ, λ̄;φ). Equation (26) has two basic properties, namely, (1) any
differentiable function of a solution is again a solution; (2) under certain mild conditions on
W ′, a solution which is equal to zero at a certain point λ0 ∈ C, vanishes identically (Vekua’s
theorem) [25]. The use of these two properties allows us to construct algebraic equations of
the form �(xn, x̄n, Sxn

, Sx̄n
) = 0.

Denoting x1 = z, choosing x2 = x̄2 = ξ , taking into account that Sz = λ + S̃z, Sz̄ =
λ−1 + S̃z̄, Sξ = (

λ3 + 1
λ3

)
+ S̃ξ , and using the properties of the linear Beltrami equation (26)

mentioned above, one obtains

SzSz̄ = u (27)

Sξ = S3
z + S3

z̄ + V Sz + V̄ Sz̄ (28)

where

u(z, z̄, ξ) = 1 + S
(∞)
1z̄ V = −3S

(∞)
1z = −3∂−1

z̄ uz. (29)

Evaluating the terms of the order 1/λ on both sides of equation (28), one obtains the dVN
equation

uξ = −3
(
u∂−1

z̄ uz

)
z
− 3

(
u∂−1

z uz̄

)
z̄
. (30)

Considering higher ‘times’ x3, x4, . . . such that xn = x̄n, one obtains the equations

Sxn
=

n∑
m=1

(
umS2m−1

z + ūmS2m−1
z̄

)
n = 3, 4, . . . . (31)

Equations (31) together with (27) and (28) provide us with the infinite dVN hierarchy of
equations.

Thus, the quasiclassical ∂̄-dressing method allows us to treat the eikonal equation (27),
equations (28) and (31) which describe its deformations and the corresponding dVN hierarchy
for u, in a way similar to the dKP and d2DTL hierarchies [18–20]. These integrable dVN
deformations of the eikonal equation (27) are quite special. In particular, they are characterized
by the existence of an infinite set of integral quantities (integrals of motion for the dVN
equation), which are preserved by these deformations. The simplest of them, for u such that
u → 0 as |z| → ∞, is given by the total squared refractive index C1 = ∫∫

u(z, z̄, ξ) dz ∧ dz̄

(C1ξ = 0).
Constraint (25) guarantees that the refractive index u is a real one. Indeed, taking the

complex conjugation of equation (27), using the differential consequences (with respect to
z and z̄), of the above constraint and taking into account the independence of the lhs of
equation (27) on λ,λ̄, one obtains

ū(xn) = Sz(λ, λ̄, xn) Sz̄(λ, λ̄, xn) = Sz̄

(
1

λ̄
,

1

λ
, xn

)
Sz

(
1

λ̄
,

1

λ
, xn

)
= u(xn). (32)

Moreover, this constraint implies that the function S is real valued on the unit circle |λ| = 1
(S̄(λ, λ̄) = S(λ, λ̄), |λ| = 1).
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Thus, the approach proposed provides us with the real-valued refractive index u(xn) and
the phase function S together with their slow variations in the direction orthogonal to the plane
x, y. Note it is not necessary that the refractive index u = 4n2 should be positive. For certain
media the product µε0 can be negative as well [26].

The quasiclassical ∂̄-dressing way provides also an effective way to construct the exact
solutions of the dVN equations as in the dKP case [18–20]. The exact solutions of the dVN
equation and their applications in geometrical optics will be discussed in a separate paper.

Finally we would like to note that the solutions of the nonlinear Beltrami equation (20)
represent themselves the so-called quasiconformal mappings (for the dKP equation, see [18]).
In the our case we have quasiconformal mappings of the ring D, given by the function
S(λ, λ̄, xn), with the boundary conditions (22) and (23) and constraints (24) and (25). Thus
the quasiclassical ∂̄-dressing approach to the eikonal equation (27) and its deformations by
dVN hierarchy establish a connection between the geometrical optics and the theory of the
quasiconformal mappings on the plane [27, 28].
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